Hero image

520Uploads

200k+Views

107k+Downloads

Paper chain fun
IETEducationIETEducation

Paper chain fun

(0)
Consider colour sequences and measurements while making paper chains for Christmas Paper chains are super easy to make and a great way to decorate a room or Christmas Tree. In this Christmas STEM activity, students are going to try to make the longest chain possible with three pieces of paper. Students will consider the different sequences that are all around them, whilst thinking about colour patterns and number sequences. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
James Webb Space Telescope - DIY Faraday Challenge Day
IETEducationIETEducation

James Webb Space Telescope - DIY Faraday Challenge Day

(0)
A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own Faraday Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths together in an engaging way. The James Webb Space Telescope challenge is based on the Faraday Challenge of the same name from our 2018/19 season of Faraday Challenge Days. Students are given an engineering brief from Tim Peake (found in the student booklet) where he invites the students to assist the engineering mission of the James Webb Space Telescope team. They will need to demonstrate that they have the engineering skills required to engineer and construct a working prototype of their design and pitch their products to the judges. Designed for six teams of six students (36 students in total) aged 12-13 years (year 8 England, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. Can your students help make a difference as a Faraday James Webb Space Telescope engineer?
Programmable systems - How much do you know about programmable systems?
IETEducationIETEducation

Programmable systems - How much do you know about programmable systems?

(0)
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. It is very important that food is prepared or cooked to the correct temperature. Too cold and it could cause food poisoning, too hot and it could burn. A temperature probe can be used to check that the temperature of food is at the right level. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a food temperature probe that will warn people when their food is too cold. Activity info, teachers’ notes and curriculum links In this activity, learners will recall and extend their understanding of programmable systems. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Learning more about programmable systems
IETEducationIETEducation

Learning more about programmable systems

(1)
Students discuss what they do and don’t know about programmable systems This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error. In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz. Activity info, teachers’ notes and curriculum links In this activity, learners will self-assess and plan how to extend their current knowledge of programmable systems. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design a prototype score counter
IETEducationIETEducation

Design a prototype score counter

(0)
Use the BBC micro:bit programmable system to create a working prototype of a score counter This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Some people enjoy taking part in quizzes in their spare time. Keeping an accurate score of points gained by each team, or player, is important when deciding who the overall winner is. Programmable counter systems can be used to do this quickly and easily, and reduce the likelihood of human error. In this unit of learning, learners will use the BBC micro:bit to develop a programmable counter that can be used to keep score during a quiz. Activity info, teachers’ notes and curriculum links In this activity, learners will integrate a BBC micro:bit based programmable system into a working product prototype. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Test and modify the pedestrian crossing system
IETEducationIETEducation

Test and modify the pedestrian crossing system

(0)
Create and implement a set of tests for your prototype This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely. In this unit of learning, learners will integrate a BBC micro:bit based programmable system into a working product prototype. Activity info, teachers’ notes and curriculum links In this activity, learners will create and implement a set of tests for their prototype and suggest possible improvements. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Create a portable beep tester
IETEducationIETEducation

Create a portable beep tester

(0)
Manufacture the beep tester using the BBC micro:bit This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions, and set targets for future improvement. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels. Activity info, teachers’ notes and curriculum links In this activity, learners will use a vacuum former to manufacture a suitable casing and integrate the programmable system into a completed product. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design the casing for a flood warning system
IETEducationIETEducation

Design the casing for a flood warning system

(0)
Draw and annotate casing that meets a design brief and design criteria This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Flooding is becoming increasingly common in parts of the United Kingdom and causes a lot of damage to peoples’ homes. The sooner a potential flood can be detected, the more time homeowners have to prepare and to save their property. In this unit of learning, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will design a suitable casing for their BBC micro:bit flood warning system. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
What are the pros and cons of using public transport?
IETEducationIETEducation

What are the pros and cons of using public transport?

(0)
Analyse current transport options and compile a list of criteria that future methods of transport should fulfil In the UK around 75% of people use their car for their daily commute. However, with congestion and pollution from increased traffic, why aren’t more people using community transport? This is one of a set of free STEM resources for KS3. Can your students think about current methods of community transport and consider the advantages and disadvantages of each? Activity: In this activity, students are asked to think about current methods of community transport and the associated pros and cons. Their ideas will then be used to compile a class list of criteria that future methods of community transport should fulfil. Slide 2 of the presentation below shows an image of traffic congestion. Learners should discuss what the image conveys and how they feel about this. Take time to discuss why many people choose to drive rather than use community transport. One possible solution to reduce the amount of traffic on the road is for more people to use community transport. What do students think about this solution? Slide 3 of the presentation shows a range of current community transport methods. Students will work in pairs or small groups to discuss the pros and cons of each method. You may like to go through one type of transport as a class and then ask the students to go through the remaining individually or in groups. This feedback can be used to compile a class list of criteria that community transport needs to fulfil in the future e.g. sustainable (materials used to make the transport, the infrastructure needed as well as the fuel used), low pollution, use of renewables, low energy consumption (high energy efficiency), cheap, fast, good networks and frequent service. This is a quick and simple activity that will take approximately 25 minutes to complete. Suggested learning outcomes By the end of this activity students will be able to identify the pros and cons of different types of community transport and they will be able to compile a list of criteria for future community transport. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Magnetic forces STEM activity
IETEducationIETEducation

Magnetic forces STEM activity

(0)
Creating designs for novel products using magnets In this fun STEM activity students will learn about how magnets can be used to attract or repel each other. They will use their knowledge of how they work to identify and sketch design ideas for two novel products that make use of magnets and magnetism. This resource is a great way for KS2 students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University. This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on identifying and sketching design ideas for innovative products that make use of magnets. This activity could be completed as individuals or in small groups. This activity will take approximately 40-60 minutes to complete. Tools/resources required Bar magnets with N and S poles marked Modelling materials (for extension activity) Pencils, pens and sketching equipment CAD software (for extension activity) Modelling tools and equipment (for extension activity) Magnetic forces Magnets are made from materials such as iron and nickel and they have a north pole and a south pole. When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south. The engineering context Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions. Suggested learning outcomes By the end of this activity students will be able to describe magnets as having two poles, they will understand how magnets attract or repel each other and they will be able to identify and design ideas for products that make use of magnets. Download the free Magnetic forces STEM activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a doorbell circuit
IETEducationIETEducation

Make a doorbell circuit

(0)
Learn how to make a doorbell circuit in this fun STEM activity for KS2 This fun STEM activity for kids will teach you all about electrical switches and will show you how to build your own doorbell circuit! In this activity pupils will assemble a doorbell circuit. This develops understanding of how switches are used and how electrical circuits function. This could be used as a KS2 engineering activity or as a design and make or general STEM project. The presentation, which can be downloaded below, includes an image of the circuit and detailed instructions on preparing and joining the wires. As an alternative switch for an extension activity, a ‘blister switch’ is an improvement on the metal foil switch. It comprises of two pieces of foil, each connected to the circuit, but separated by a piece of card in which a square or circle is cut. The foil needs to be taut over the cut-out hole. When the top piece of foil is pressed, this should make a connection; and when pressure is released, the foil should cease to make contact. This activity will take approximately 70 – 90 minutes. Tools/resources required Projector/Whiteboard Components: 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 2 metal split pin fasteners per pupil A7 card, 1 piece per pupil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid online and TTS group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) A7 card, 1 per pupil Metal foil A4 card and coloured pencils Scissors Pre-made model of the circuit, for demonstration The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in home to televisions and computers. An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e. have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches operate as an input device that make a gap in the circuit to stop electricity flowing when they are open. A circuit will normally also have at least one output device, such as a buzzer to produce sound or a bulb to produce light. Suggested learning outcomes By the end of this project students will be able to construct an electrical switch and they will also be able to understand that a complete circuit is required for electricity to flow. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Design a hoverboard
IETEducationIETEducation

Design a hoverboard

(0)
An activity for GCSE students to design a levitating hoverboard that works using magnetism 1980s films predicted that by 2015 people using hoverboards would be a very common sight, but only now is the technology finally reaching the point where it can become a reality. Students will combine their creative prowess with scientific principles as they tackle the challenge of designing a functional hoverboard that defies gravity through the power of magnetism. This hands-on experience will not only push the boundaries of students’ creativity but also empower them to apply scientific theory in a tangible and captivating way. Activity introduction This activity is one of a series of free resources designed to support the delivery of the new 9-1 GCSEs in Design & Technology, and Engineering. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on designing a hoverboard that uses magnetism and magnetic fields. Students will need to design a hoverboard for teenagers that can move forward without touching the ground. The product should use a suitable method of keeping the board in the air, such as magnetism. Learners should draw on their scientific knowledge of magnetism and magnetic fields and focus on applying this in an engineering/design context. Magnetism is a fundamental scientific phenomenon. Utilising this has allowed designers to create new and innovative products, such as fully working MAGLEV trains and hoverboards. The engineering context Utilising scientific principles for product design constitutes a significant component within the new GCSE curriculum for Design & Technology and Engineering. The insights acquired from this approach can also be harnessed while leveraging magnetic forces and other associated scientific phenomena to bolster the conceptualisation of upcoming products. Suggested learning outcomes Upon completion of this task, students will have the capacity to create a functional levitating hoverboard by applying scientific principles to product design. Additionally, they will be able to effectively convey design concepts using sketches, written notes, and annotations. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Investigating how hoverboards work
IETEducationIETEducation

Investigating how hoverboards work

(0)
An engaging activity in which students will analyse and investigate how hoverboards work. They will consider the science and technology behind how they are able to levitate, the main features of each design and what that could be improved.
Build your own Christmas lights
IETEducationIETEducation

Build your own Christmas lights

(0)
Climate change and electricity? Investigate types of circuit with buzzers and lights to experiment and find out which is best for our planet. In this science activity for Key Stage 2, students will investigate different types of circuits to determine the most sustainable ones. They will then build their own Christmas lights by making a circuit with LED bulbs and crocodile leads. This is an engaging experiment that will encourage students to have fun with science! Students will first compare series circuits against parallel circuits. A series circuit is a configuration where components are connected one after another in a single path, creating a single flow of current. In contrast, a parallel circuit is a setup where components are linked across multiple paths, allowing current to split and flow through each component independently. Following this, students will replace the battery pack in their circuit with a solar panel. Students should consider the following questions: Are the LEDs as bright as with the battery pack? How does the weather affect the brightness of the LEDs? Can you add as many LEDs to your parallel circuit as you can with the battery pack? Solar power is a renewable energy source that is much better for our environment. In this activity, we use solar panels, which transfer solar energy into electrical energy and light energy without storing it. Solar panels aren’t useful for Christmas lights as it would mean that they would only work during the day if the solar panel were in direct sunlight. In order to use our Christmas lights at night, we would need to add a storage cell, such as a rechargeable battery, which could store the energy until we turn on the lights in the evening. We would still need to ensure that the solar panel is in direct sunlight during the day, though, to ensure our lights come on every evening. Next time you buy your Christmas lights, think about what you could do differently to help protect our environment, particularly Santa’s North Pole! Equipment required A 2 x AA battery pack and batteries A 3V solar panel At least eight crocodile leads At least 4 LEDs (Different colours if possible) 5V bulb to show the difference in light emitted Download the free Build your own Christmas lights activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, and please share your classroom learning highlights with us @IETeducation.
How to make a Christmas cracker
IETEducationIETEducation

How to make a Christmas cracker

(0)
Use design and technology skills to use a 2D net to make a 3D Christmas cracker and hat This engaging activity for kids is one of a series of accessible STEM resources designed to allow learners to use the theme of the Christmas period to develop their knowledge and skills in Mathematics, Design & Technology and Engineering. Download our free activity sheet for a step-by-step guide on making a DIY Christmas cracker and hat from paper. This activity could be carried out individually or in small groups. Once you have created your Christmas cracker, consider what gifts you could put into it. Who would you give the gift to? Students could add designs to the Christmas cracker and hat as a fun extension activity. For example, they could add different colours and images related to Christmas, such as reindeer or snowmen. Learners could also create a joke book to be put inside their crackers using the IET resource titled ‘Christmas cracker jokes’. Tools/resources required Glue sticks Paper Coloured pencils Scissors Gold/Silver pens to add decoration Pre-printed Christmas images The engineering context Engineers use nets to make 3D models of structures and even products like vacuum cleaners. Suggested learning outcomes By the end of this activity, you will understand what a 2D net or surface development means and how engineers assemble them into 3D objects, structures and products. You will then learn how to create and make a Christmas cracker and a hat from a net. Download the free How to make Christmas crackers activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Oh ho ho, please share your classroom learning highlights with us @IETeducation! #SantaLovesSTEM.
Crafts with cardboard boxes
IETEducationIETEducation

Crafts with cardboard boxes

(0)
In this fun activity for kids, students can make cool crafts out of cardboard boxes. Use a cardboard box of any size and other recyclables you can find and use safely. We challenge you to get creative and bring one of our ideas to life or go a step further and invent your own project. Students should be encouraged to draw or write about as many ideas as possible for their cardboard box creation. They could make a castle, robot, rocket, or musical instrument. Learners could even think about a box they could get into or have fun with. No idea is too big! How long will this activity take? This activity will take approximately 30-59 minutes to complete. The engineering context Engineers must understand the environmental impact of the designs they produce and how their carbon footprint can be reduced, for example, by using recycled or reused materials more. This activity encourages resourcefulness by repurposing materials that might otherwise be discarded. Children can learn the value of recycling and environmental sustainability by transforming cardboard into imaginative creations. These crafts also enhance problem-solving skills as children conceptualise, plan, and construct their projects, developing critical thinking and spatial awareness. Download the free Crafts with cardboard boxes activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Don’t forget to take photos of your finished cardboard box design and share them with us @IETeducation.
Puff pastry pizza swirls recipe
IETEducationIETEducation

Puff pastry pizza swirls recipe

(0)
Design and make puff pastry pizza swirls with a STEM twist. Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below. This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion. This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation
Making a Diya for Diwali (primary)
IETEducationIETEducation

Making a Diya for Diwali (primary)

(0)
Design and make a ghee lamp to celebrate Diwali Lots of people across the world celebrate Diwali, which is known as the festival of lights. Can you make a diya lamp for use during the celebrations? Traditionally made from clay or mud, diyas are an oil lamp that are considered to bring good fortune. In this activity, learners will make a diya lamp using air drying clay. They will first create a pinch pot before making this into the shape for the diya. Once dry, they will design and decorate the lamp by adding colour and then use it to see how well it works. This is one of a series of resources designed to allow learners to use the theme of Diwali to develop their knowledge and skills in design and technology and art. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions as either a classroom lesson plan or PowerPoint presentation And don’t forget to share your learning highlights and final creations with us on social media @IETEducation
Power poster
IETEducationIETEducation

Power poster

(0)
Secondary classroom poster calculating mechanical and electrical power. Order a free set of secondary posters from the IET Website.
Comparing the carbon footprint of transportation
IETEducationIETEducation

Comparing the carbon footprint of transportation

(0)
A maths-based challenge for KS3 to calculate the journey times and carbon footprint of different methods of travel As well as testing students’ mathematical abilities, this activity highlights the issue of sustainable travel and the effects of some modes of transport on the environment. This could be used as a one-off main lesson activity to use maths skills in context, or as part of a scheme of work on sustainability, to build knowledge and understanding of climate change and ways of reducing it. Activity introduction This activity is one of a series of resources designed in conjunction with Network Rail to develop understanding and skills in key maths, science, and engineering concepts. The carbon footprint data in the presentation is derived from passenger-specific figures published by BEIS/Defra Greenhouse Gas Conversion Factors 2019. Transportation speeds are approximations based on typical values obtained from commonly used search engines. Any statistical or speed-related data used in this activity serves its sole purpose within the activity and may not accurately mirror current real-world conditions. Variability might arise due to seasonal changes, environmental conditions, or legal constraints. When utilising the activity sheet, students can construct tables for each journey, showcasing their findings (as depicted on the sheet). For air travel, a buffer of 3 hours should be allotted to account for check-in, security procedures, and boarding at airports. To add an additional layer of complexity, transit times to airports and railway stations could be incorporated. The presentation includes supplementary slides for those who prefer kilometres instead of miles. The engineering context Engineers must understand how products impact the environment; This pertains not only to modes of transportation but also encompasses the production of new items. They can use this knowledge to balance the environmental impact with the function carried out by the product. Engineers can also develop new or improved Suggested learning outcomes By the end of this activity, students will be able to solve a contextual problem using division and multiplication, and they will understand how to calculate journey times and the carbon footprint for alternative modes of transport. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation. Please do share your highlights with us @IETeducation.